

APPENDIX D REGISTER SUMMARY

This appendix contains address maps, register diagrams, and bit/field definitions for the MPC521 microcontroller. More detailed information about register function is provided in the appropriate sections of the manual.

Except for central processing unit resources, information is presented in the intermodule bus address order shown in **Table D-1**.

Module	Size (Bytes)	Base Address
SIM	128	\$YFFA00
TPURAM	64	\$FFB00
QSM	512	\$YFFC00
TPU	512	\$YFFE00

Table D-1 Module Address Map

Control registers for all the modules in the microcontroller are mapped into a 4-Kbyte block. The state of the module mapping (MM) bit in the SIM configuration register (SIMCR) determines where the control register block is located in the system memory map. When MM = 0, register addresses range from \$7FF000 to \$7FFFFF; when MM = 1, register addresses range from \$FFF000 to \$FFFFFF.

In the module memory maps in this appendix, the "Access" column specifies which registers are accessible when the CPU32 is in supervisor mode only and which registers can be assigned to either supervisor or user mode.

D.1 Central Processor Unit

CPU32 registers are not part of the module address map. **Figure D-1** and **Figure D-2** show a functional representation of CPU32 resources.

D.1.1 CPU32 Register Model

31	16 15	8 7	0		
				D0	
				D1	
				D2	
				D3	DATA REGISTERS
				D4	
				D5	
				D6	
				D7	
31	16 15		0		
				A0	
				A1	
				A2	
				A3	ADDRESS REGISTERS
				A4	
				A5	
				A6	
31	16 15		0		
				A7 (SSP)	USER STACK POINTER
31			0		
				PC	PROGRAM COUNTER
		7	0		
				CCR	CONDITION CODE REGISTER
					CPU32 USER PROG MODEL

Figure D-1 User Programming Model

CPU32 SUPV PROG MODEL

Figure D-2 Supervisor Programming Model Supplement

D.1.2 Status Register

SR — Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T[1	:0]	S	0	0		IP[2:0]		0	0	0	Х	Ν	Z	V	С
RES	SET:														
0	0	1	0	0	1	1	1	0	0	0	U	U	U	U	U

The status register (SR) contains condition codes, an interrupt priority mask, and three control bits. The condition codes are contained in the condition code register (CCR), the lower byte of the SR. (The lower and upper bytes of the status register are also referred to as the user and system bytes, respectively.) In user mode, only the CCR is available. In supervisor mode, software can access the full status register.

T[1:0] — Trace Enable

This field places the processor in one of two tracing modes or disables tracing. Refer to **Table D-2**.

T[1:0]	Response
00	No tracing
01	Trace on change of flow
10	Trace on instruction execution
11	Undefined; reserved

Table D-2 T[1:0] Encoding

S — Supervisor/User State

0 = CPU operates at user privilege level

1 = CPU operates at supervisor privilege level

IP[2:0] — Interrupt Priority Mask

The priority value in this field (0 to 7) is used to mask interrupts.

X — Extend Flag

Used in multiple-precision arithmetic operations. In many instructions, it is set to the same value as the C bit.

N — Negative Flag

Set when the MSB of a result register is set.

Z — Zero Flag

Set when all bits of a result register are zero.

V — Overflow Flag

Set when two's complement overflow occurs as the result of an operation.

C — Carry Flag

Set when a carry or borrow occurs during an arithmetic operation. Also used during shift and rotate instructions to facilitate multiple word operations.

D.2 System Integration Module

Table D-3 shows the SIM address map. The column labeled "Access" indicates the privilege level at which the CPU32 must be operating to access the register. A designation of "S" indicates that supervisor mode is required. A designation of "S/U" indicates that the register can be programmed for either supervisor mode access or unrestricted access.

Access	Address	15 8 7	0
S	\$YFFA00	SIM Module Configuration Register (SIMCR)	
S	\$YFFA02	SIM Test Register (SIMTR)	
S	\$YFFA04	Clock Synthesizer Control Register (SYNCR)	
S	\$YFFA06	Not Used Reset Status Register (RSF	ł)
S	\$YFFA08	SIM Test Register E (SIMTRE)	
S	\$YFFA0A	Not Used	
S	\$YFFA0C	Not Used	
S	\$YFFA0E	Not Used	
S/U	\$YFFA10	Not Used Port E Data (PORTE0)	
S/U	\$YFFA12	Not Used Port E Data (PORTE1)	
S/U	\$YFFA14	Not Used Port E Data Direction (DDRI	Ξ)
S	\$YFFA16	Not Used Port E Pin Assignment (PEPA	ιR)
S/U	\$YFFA18	Not Used Port F Data (PORTF0)	
S/U	\$YFFA1A	Not Used Port F Data (PORTF1)	
S/U	\$YFFA1C	Not Used Port F Data Direction (DDRF	-)
S	\$YFFA1E	Not Used Port F Pin Assignment (PFPA	ιR)
S	\$YFFA20	Not Used System Protection Control (SYF	PCR)
S	\$YFFA22	Periodic Interrupt Control Register (PICR)	
S	\$YFFA24	Periodic Interrupt Timing Register (PITR)	
S	\$YFFA26	Not Used Software Service (SWSR)	
S	\$YFFA28	Not Used	
S	\$YFFA2A	Not Used	
S	\$YFFA2C	Not Used	
S	\$YFFA2E	Not Used	
S	\$YFFA30	Test Module Master Shift A (TSTMSRA)	
S	\$YFFA32	Test Module Master Shift B (TSTMSRB)	
S	\$YFFA34	Test Module Shift Count (TSTSC)	
S	\$YFFA36	Test Module Repetition Counter (TSTRC)	
S	\$YFFA38	Test Module Control (CREG)	
S/U	\$YFFA3A	Test Module Distributed (DREG)	
	\$YFFA3C	Not Used	
	\$YFFA3E	Not Used	
S/U	\$YFFA40	Not Used Port C Data (PORTC)	
	\$YFFA42	Not Used	
S	\$YFFA44	Chip-Select Pin Assignment (CSPAR0)	

Table D-3 SIM Address Map

MC68332 USER'S MANUAL

Table D-3 SIM Address Map (Continued)

Access	Address ¹	15 8 7 0
S	\$YFFA46	Chip-Select Pin Assignment (CSPAR1)
S	\$YFFA48	Chip-Select Base Boot (CSBARBT)
S	\$YFFA4A	Chip-Select Option Boot (CSORBT)
S	\$YFFA4C	Chip-Select Base 0 (CSBAR0)
S	\$YFFA4E	Chip-Select Option 0 (CSOR0)
S	\$YFFA50	Chip-Select Base 1 (CSBAR1)
S	\$YFFA52	Chip-Select Option 1 (CSOR1)
S	\$YFFA54	Chip-Select Base 2 (CSBAR2)
S	\$YFFA56	Chip-Select Option 2 (CSOR2)
S	\$YFFA58	Chip-Select Base 3 (CSBAR3)
S	\$YFFA5A	Chip-Select Option 3 (CSOR3)
S	\$YFFA5C	Chip-Select Base 4 (CSBAR4)
S	\$YFFA5E	Chip-Select Option 4 (CSOR4)
S	\$YFFA60	Chip-Select Base 5 (CSBAR5)
S	\$YFFA62	Chip-Select Option 5 (CSOR5)
S	\$YFFA64	Chip-Select Base 6 (CSBAR6)
S	\$YFFA66	Chip-Select Option 6 (CSOR6)
S	\$YFFA68	Chip-Select Base 7 (CSBAR7)
S	\$YFFA6A	Chip-Select Option 7 (CSOR7)
S	\$YFFA6C	Chip-Select Base 8 (CSBAR8)
S	\$YFFA6E	Chip-Select Option 8 (CSOR8)
S	\$YFFA70	Chip-Select Base 9 (CSBAR9)
S	\$YFFA72	Chip-Select Option 9 (CSOR9)
S	\$YFFA74	Chip-Select Base 10 (CSBAR10)
S	\$YFFA76	Chip-Select Option 10 (CSOR10)
	\$YFFA78	Not Used
	\$YFFA7A	Not Used
	\$YFFA7C	Not Used
	\$YFFA7E	Not Used

NOTES:

1. Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

D.2.1 SIM Configuration Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EX- OFF	FRZS W	FRZB M	0	RSVD ¹	0	SHEN	N[1:0]	SUPV	MM	0	0		IARE	8[3:0]	
RES	SET:														
0	1	1	0	DATA11	0	0	0	1	1	0	0	1	1	1	1

NOTES:

1. This bit must be left at zero. Pulling DATA11 high during reset ensures this bit remains zero. A one in this bit could allow the MCU to enter an unsupported operating mode.

\$TFFA00

SIMCR controls system configuration. SIMCR can be read or written at any time, except for the module mapping (MM) bit, which can only be written once.

- EXOFF External Clock Off
 - 0 = The CLKOUT pin is driven during normal operation.
 - 1 = The CLKOUT pin is placed in a high-impedance state.
- FRZSW Freeze Software Enable
 - 0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters continue to run.
 - 1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters are disabled, preventing interrupts during background debug mode.
- FRZBM Freeze Bus Monitor Enable
 - 0 = When FREEZE is asserted, the bus monitor continues to operate.
 - 1 = When FREEZE is asserted, the bus monitor is disabled.

SHEN[1:0] — Show Cycle Enable

The SHEN field determines how the external bus is driven during internal transfer operations. A show cycle allows internal transfers to be monitored externally.

Table D-4 shows whether show cycle data is driven externally, and whether external bus arbitration can occur. To prevent bus conflict, external peripherals must not be enabled during show cycles.

Table D-4 Show Cycle Enable Bits

SHEN[1:0]	Action
00	Show cycles disabled, external arbitration enabled
01	Show cycles enabled, external arbitration disabled
10	Show cycles enabled, external arbitration enabled
11	Show cycles enabled, external arbitration enabled; internal activity is halted by a bus grant

SUPV — Supervisor/Unrestricted Data Space

The SUPV bit places the SIM global registers in either supervisor or user data space.

- 0 = Registers with access controlled by the SUPV bit are accessible in either supervisor or user mode.
- 1 = Registers with access controlled by the SUPV bit are restricted to supervisor access only.

MM — Module Mapping

- 0 = Internal modules are addressed from \$7FF000 \$7FFFFF.
- 1 = Internal modules are addressed from \$FFF000 \$FFFFFF.

IARB[3:0] — Interrupt Arbitration ID

Each module that can generate interrupts, including the SIM, has an IARB field. Each IARB field can be assigned a value from \$0 to \$F. During an interrupt acknowledge cycle, IARB permits arbitration among simultaneous interrupts of the same priority level. The reset value of the SIM IARB field is \$F. This prevents SIM interrupts from being discarded during system initialization.

MC68332
USER'S MANUAL

D.2.2 System Integration Test Register

SIMTR — System Integration Test Register Used for factory test only.

D.2.3 Clock Synthesizer Control Register

Clock Synthesizer Control Degister

								yisiei 91 777					A04		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
W	х			Y[{	5:0]			EDIV	0	0	RSVD ¹	SLOC K	RSVD	STSI M	STEX T
RES	SET:														
0	0	1	1	1	1	1	1	0	0	0	0	U	0	0	0
NOT	- 0														

NOTES:

CANCD

1. Ensure that initialization software does not change the value of these bits. They should always be zero.

SYNCR determines system clock operating frequency and operation during low-power stop mode. Clock frequency is determined by SYNCR bit settings as follows:

$$f_{sys} = \frac{f_{ref}}{128} [4(Y+1)(2^{(2W+X)})]$$

W — Frequency Control (VCO)

This bit controls a prescaler tap in the synthesizer feedback loop. Setting this bit increases the VCO speed by a factor of four. VCO relock delay is required.

X — Frequency Control (Prescaler)

This bit controls a divide by two prescaler that is not in the synthesizer feedback loop. Setting the bit doubles clock speed without changing the VCO speed. No VCO relock delay is required.

Y[5:0] — Frequency Control (Counter)

The Y field controls the modulus down counter in the synthesizer feedback loop, causing it to divide by a value of Y + 1. VCO relock delay is required.

- EDIV E Clock Divide Rate
 - 0 = ECLK frequency is system clock divided by 8.
 - 1 = ECLK frequency is system clock divided by 16.

ECLK is an external M6800 bus clock available on ADDR23.

- SLOCK Synthesizer Lock Flag
 - 0 = VCO is enabled, but has not locked.
 - 1 = VCO has locked on the desired frequency or VCO is disabled.

The MCU remains in reset until the synthesizer locks, but SLOCK does not indicate synthesizer lock status until after the user writes to SYNCR.

\$YFFA04

\$YFFA02

STSIM — Stop Mode SIM Clock

0 = When LPSTOP is executed, the SIM clock is driven from the crystal oscillator and the VCO is turned off to conserve power.

- 1 = When LPSTOP is executed, the SIM clock is driven from the VCO.
- STEXT Stop Mode External Clock
 - 0 = When LPSTOP is executed, the CLKOUT signal is held negated to conserve power.
 - 1 = When LPSTOP is executed and EXOFF | 1 in SIMCR, the CLKOUT signal is driven from the SIM clock, as determined by the state of the STSIM bit.

D.2.4 Reset Status Register

RSR — Reset Status Register								\$YFF	FA07
15	8	7	6	5	4	3	2	1	0
NOT USED		EXT	POW	SW	HLT	0	RSVD	SYS	TST

RSR contains a status bit for each reset source in the MCU. RSR is updated when the MCU comes out of reset. A set bit indicates what type of reset occurred. If multiple sources assert reset signals at the same time, more than one bit in RSR may be set. This register can be read at any time; writes have no effect.

EXT — External Reset

Reset caused by the RESET pin.

POW — Power-Up Reset

Reset caused by the power-up reset circuit.

SW — Software Watchdog Reset

Reset caused by the software watchdog circuit.

HLT — Halt Monitor Reset Reset caused by the halt monitor.

SYS — System Reset Reset caused by a RESET instruction.

TST — Test Submodule Reset

Reset caused by the test submodule. Used during system test only.

D.2.5 System Integration Test Register (ECLK)

SIMTRE — System Integration Test Register (ECLK) \$YFFA08 Used for factory test only.

PORTE0 — Port E0 Data Register PORTE1 — Port E1 Data Register								\$YFI \$YFI	FA11 FA13
15	8	7	6	5	4	3	2	1	0
NOT USED		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
RESET:									
		U	U	U	U	U	U	U	U

PORTE is an internal data latch that can be accessed at two locations. It can be read or written at any time. If a port E I/O pin is configured as an output, the corresponding bit value is driven out on the pin. When a pin is configured as an output, a read of PORTE returns the latched bit value; when a pin is configured as an input, a read returns the pin logic level.

D.2.7 Port E Data Direction Register

DDRE — Port E Data Direction Register							\$YFF	A15	
15	8	7	6	5	4	3	2	1	0
NOT USED		DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0
RESET:									
		0	0	0	0	0	0	0	0

Bits in this register control the direction of the port E pin drivers when pins are configured for I/O. Setting a bit configures the corresponding pin as an output; clearing a bit configures the corresponding pin as an input. This register can be read or written at any time.

D.2.8 Port E Pin Assignment Register

PEPAR — Port E Pin Assignment								\$YFF	A17
15	8	7	6	5	4	3	2	1	0
NOT USED		PEPA 7	PEPA 6	PEPA 5	PEPA 4	PEPA 3	PEPA 2	PEPA 1	PEPA 0
RESET:									
		DATA 8							

Bits in this register determine the function of port E pins. Setting a bit assigns the corresponding pin to a bus control signal; clearing a bit assigns the pin to I/O port E. Refer to **Table D-5**.

PEPAR Bit	Port E Signal	Bus Control Signal
PEPA7	PE7	SIZ1
PEPA6	PE6	SIZO
PEPA5	PE5	ĀS
PEPA4	PE4	DS
PEPA3	PE3	RMC
PEPA2	PE2	AVEC
PEPA1	PE1	DSACK1
PEPA0	PE0	DSACK0

Table D-5 Port E Pin Assignments

D.2.9 Port F Data Register

PORTF0 — Port F Data Register 0 PORTF1 — Port F Data Register 1							:	\$YFF \$YFF	A19 A1B
15	8	7	6	5	4	3	2	1	0
NOT USED		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
RESET:									
		U	U	U	U	U	U	U	U

PORTF is an internal data latch that can be accessed at two locations. It can be read or written at any time. If a port F I/O pin is configured as an output, the corresponding bit value is driven out on the pin. When a pin is configured as an output, a read of PORTF returns the latched bit value; when a pin is configured as an input, a read returns the pin logic level.

D.2.10 Port F Data Direction Register

DDRF — Port F Data Direction Register\$YF										
15	8	7	6	5	4	3	2	1	0	
NOT USED		DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	
RESET:										
		0	0	0	0	0	0	0	0	

Bits in this register control the direction of the port F pin drivers when pins are configured for I/O. Setting a bit configures the corresponding pin as an output; clearing a bit configures the corresponding pin as an input. This register can be read or written at any time.

D.2.11 Port F Pin Assignment Register

PFPAR — Port F Pin Assignment Regist	er						\$YFFA1F				
15	8	7	6	5	4	3	2	1	0		
NOT USED		PFPA 7	PFPA 6	PFPA 5	PFPA 4	PFPA 3	PFPA 2	PFPA 1	PFPA 0		
RESET:											
		DATA 9									

Bits in this register determine the function of port F pins. Setting a bit assigns the corresponding pin to a control signal; clearing a bit assigns the pin to port F. Refer to **Table D-6**.

PFPAR Field	Port F Signal	Alternate Signal
PFPA7	PF7	IRQ7
PFPA6	PF6	IRQ6
PFPA5	PF5	IRQ5
PFPA4	PF4	IRQ4
PFPA3	PF3	IRQ3
PFPA2	PF2	IRQ2
PFPA1	PF1	IRQ1
PFPA0	PF0	MODCLK

Table D-6 Port F Pin Assignments

D.2.12 System Protection Control Register

SYPCR — System Protection Control Register

\$YFFA21

SYPCR controls system monitor functions, software watchdog clock prescaling, and bus monitor timing. This register can be written once following power-on or reset.

SWE — Software Watchdog Enable

0 = Software watchdog is disabled.

1 = Software watchdog is enabled.

SWP — Software Watchdog Prescale

This bit controls the value of the software watchdog prescaler.

0 = Software watchdog clock is not prescaled.

1 = Software watchdog clock is prescaled by 512.

The reset value of SWP is the complement of the state of the MODCLK pin during reset.

MC68332
USER'S MANUAL

SWT[1:0] — Software Watchdog Timing

This field selects the divide ration used to establish software watchdog timeout period. Refer to **Table D-7**.

SWP	SWT[1:0]	Watchdog Time-Out Period
0	00	2 ⁹
0	01	2 ¹¹
0	10	2 ¹³
0	11	2 ¹⁵
1	00	2 ¹⁸
1	01	2 ²⁰
1	10	2 ²²
1	11	2 ²⁴

Table D-7 Software Watchdog Timing Field

HME — Halt Monitor Enable

0 = Halt monitor is disabled.

1 = Halt monitor is enabled.

BME — Bus Monitor External Enable

- 0 = Disable bus monitor for internal to external bus cycle.
- 1 = Enable bus monitor for internal to external bus cycle.

BMT[1:0] — Bus Monitor Timing

This field selects the bus monitor time-out period. Refer to Table D-8.

Table D-8 Bus Monitor Time-Out Period

BMT[1:0]	Bus Monitor Time-Out Period
00	64 system clocks
01	32 system clocks
10	16 system clocks
11	8 system clocks

D.2.13 Periodic Interrupt Control Register

PICR — Periodic Interrupt Control Register

						U U	•							•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	P	IRQL[2:	0]				PIV	[7:0]			
RES	GET:														
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

PICR sets the interrupt level and vector number for the periodic interrupt timer (PIT). Bits [10:0] can be read or written at any time. Bits [15:11] are unimplemented and always read zero.

PIRQL[2:0] — Periodic Interrupt Request Level

MC68332 USER'S MANUAL **\$YFFA22**

This field determines the priority of periodic interrupt requests. A value of %000 disables PIT interrupts.

PIV[7:0] — Periodic Interrupt Vector

This field specifies the periodic interrupt vector number supplied by the SIM when the CPU32 acknowledges an interrupt request.

D.2.14 Periodic Interrupt Timer Register

PITR	ITR — Periodic Interrupt Timer Register													\$YFFA24		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	PTP				PITM	1[7:0]				
RES	SET:															
0	0	0	0	0	0	0	MOD- CLK	0	0	0	0	0	0	0	0	

PITR specifies the prescaling and modulus value for the PIT. This register can be read or written at any time.

PTP — Periodic Timer Prescaler Control

0 = Periodic timer clock is not prescaled.

1 = Periodic timer clock is prescaled by 512.

PITM[7:0] — Periodic Interrupt Timing Modulus

This field determines the periodic interrupt rate. Use the following expressions to calculate timer period.

When a slow reference frequency is used, the PIT period can be calculated as follows:

PIT Period =
$$\frac{(PITM[7:0])(1 \text{ if } PTP = 0, 512 \text{ if } PTP = 1)(4)}{f_{ref}}$$

When an externally input clock frequency is used, the PIT period can be calculated as follows:

PIT Period =
$$\frac{(PITM[7:0])(1 \text{ if } PTP = 0, 512 \text{ if } PTP = 1)(4)}{f_{sys}}$$

D.2.15 Software Watchdog Service Register

NSR — Software Watchdog Service Register ¹ \$YFFA2													
15	8	7	6	5	4	3	2	1	0				
NOT USED		0	0	0	0	0	0	0	0				
RESET:													
		0	0	0	0	0	0	0	0				

NOTES:

1. Register shown with read value.

To reset the software watchdog:

- 1. Write \$55 to SWSR.
- 2. Write \$AA to SWSR.

Both writes must occur in the order specified before the software watchdog times out, but any number of instructions can occur between the two writes.

D.2.16 Port C Data Register

PORTC — Port C Data Register								\$YFF	A41
15	8	7	6	5	4	3	2	1	0
NOT USED		0	PC6	PC5	PC4	PC3	PC2	PC1	PC0
RESET:									
		0	1	1	1	1	1	1	1

PORTC latches data for chip-select pins configured as discrete outputs.

D.2.17 Chip-Select Pin Assignment Registers

CSP/	CSPAR0 — Chip-Select Pin Assignment Register 0														\$YFFA44		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	CS5P/	A[1:0]	CS4PA	\[1:0]	CS3PA	A[1:0]	CS2PA	A[1:0]	CS1PA	[1:0]	CS0PA	[1:0]	CSBT	PA[1:0]		
RES	SET:																
0	0	DATA 2	1	DATA 2	1	DATA 2	1	DATA 1	1	DATA 1	1	DATA 1	1	1	DATA 0		

The chip-select pin assignment registers configure the chip-select pins for use as discrete I/O, an alternate function, or as an 8-bit or 16-bit chip-select. Each 2-bit field in CSPAR[0:1] (except for CSBTPA[1:0]) has the possible encoding shown in**Table D-9**.

Table D-9 Pin Assignment Field Encoding

CSxPA[1:0]	Description
00	Discrete output ¹
01	Alternate function ²
10	Chip-select (8-bit port)
11	Chip-select (16-bit port)

NOTES:

1. Does not apply to the $\overline{\text{CSBOOT}}$ field or $\overline{\text{CS}[2:0]}$.

2. Does not apply to the CSBOOT field.

CSPAR0 contains seven 2-bit fields that determine the function of corresponding chipselect pins. Bits [15:14] are not used. These bits always read zero; writes have no effect. CSPAR0 bit 1 always reads one; writes to CSPAR0 bit 1 have no effect. The alternate functions can be enabled by data bus mode selection during reset.

 Table D-10 shows CSPAR0 pin assignments.

CSPAR0 Field	Chip-Select Signal	Alternate Signal	Discrete Output
CS5PA[1:0]	CS5	FC2	PC2
CS4PA[1:0]	CS4	FC1	PC1
CS3PA[1:0]	CS3	FC0	PC0
CS2PA[1:0]	CS2	BGACK	—
CS1PA[1:0]	CS1	BG	—
CS0PA[1:0]	CS0	BR	—
CSBTPA[1:0]	CSBOOT	—	—

Table D-10 CSPAR0 Pin Assignments

CSPAR1 — Chip-Select Pin Assignment Register 1 \$YF														\$YFF/	\46
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	CS10P	A[1:0]	CS9PA	A[1:0]	CS8PA	[1:0]	CS7PA	[1:0]	CS6PA	.[1:0]
RES	SET:														
0	0	0	0	0	0	DATA 7 ¹	1	DATA [7:6] ¹	1	DATA [7:5] ¹	1	DATA [7:4] ¹	1	DATA [7:3] ¹	1

NOTES:

1. Refer to Table D-12 for CSPAR1 reset state information.

CSPAR1 contains five 2-bit fields that determine the functions of corresponding chipselect pins. Bits [15:10] are not used. These bits always read zero; writes have no effect. **Table D-11** shows CSPAR1 pin assignments, including alternate functions that can be enabled by data bus mode selection during reset.

CSPAR1 Field	Chip-Select Signal	Alternate Signal	Discrete Output
CS10PA[1:0]	CS10	ADDR23	ECLK
CS9PA[1:0]	CS9	ADDR22	PC6
CS8PA[1:0]	CS8	ADDR21	PC5
CS7PA[1:0]	CS7	ADDR20	PC4
CS6PA[1:0]	CS6	ADDR19	PC3

Table D-11 CSPAR1 Pin Assignments

The reset state of DATA[7:3] determines whether pins controlled by CSPAR1 are initially configured as high-order address lines or chip-selects. Table D-12 shows the correspondence between DATA[7:3] and the reset configuration of $\overline{CS[10:6]}$ ADDR[23:19].

Table D-1	12 Reset	Pin Func	tion of $\overline{\mathbf{C}}$	CS[10:6]
-----------	----------	----------	---------------------------------	----------

	Data B	us Pins at	Reset		Chip-Select/Address Bus Pin Function							
DATA7	DATA6	DATA5	DATA4	DATA3	CS10/ ADDR23	CS9/ ADDR22	CS8/ ADDR21	CS7/ ADDR20	CS8/ ADDR19			
1	1	1	1	1	CS10	CS9	CS8	CS7	CS6			
1	1	1	1	0	CS10	CS9	CS8	CS7	ADDR19			
1	1	1	0	Х	CS10	CS9	CS8	ADDR20	ADDR19			
1	1	0	Х	Х	CS10	CS9	ADDR21	ADDR20	ADDR19			
1	0	Х	Х	Х	CS10	ADDR22	ADDR21	ADDR20	ADDR19			
0	Х	Х	Х	Х	ADDR23	ADDR22	ADDR21	ADDR20	ADDR19			

D.2.18 Chip-Select Base Address Register Boot ROM

CSBARBT — Chip-Select Base Address Register Boot ROM

\$YFFA48

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADDR 23	ADDR 22	ADDR 21	ADDR 20	ADDR 19	ADDR 18	ADDR 17	ADDR 16	ADDR 15	ADDR 14	ADDR 13	ADDR 12	ADDR 11	BLKSZ[2:0]		
RES	SET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

D.2.19 Chip-Select Base Address Registers

CSBAR[0:10] — Chip-Select Base Address Registers \$YFFA4C-\$YFFA74

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADDR 23	ADDR 22	ADDR 21	ADDR 20	ADDR 19	ADDR 18	ADDR 17	ADDR 16	ADDR 15	ADDR 14	ADDR 13	ADDR 12	ADDR 11	BLKSZ[2:0]		
RES	RESET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Each chip-select pin has an associated base address register. A base address is the lowest address in the block of addresses enabled by a chip select. CSBARBT contains the base address for selection of a bootstrap memory device. Bit and field definitions for CSBARBT and CSBAR[0:10] are the same, but reset block sizes differ.

ADDR[23:11] — Base Address

This field sets the starting address of a particular chip-select's address space. The address compare logic uses only the most significant bits to match an address within a block. The value of the base address must be an integer multiple of the block size. Base address register diagrams show how base register bits correspond to address lines.

BLKSZ[2:0] — Block Size Field

This field determines the size of the block that is enabled by the chip-select. **Table D-13** shows bit encoding for the base address registers block size field.

BLKSZ[2:0]	Block Size	Address Lines Compared
000	2 Kbytes	ADDR[23:11]
001	8 Kbytes	ADDR[23:13]
010	16 Kbytes	ADDR[23:14]
011	64 Kbytes	ADDR[23:16]
100	128 Kbytes	ADDR[23:17]
101	256 Kbytes	ADDR[23:18]
110	512 Kbytes	ADDR[23:19]
111	1 Mbyte	ADDR[23:20]

Table D-13 Block Size Field Bit Encoding

D.2.20 Chip-Select Option Register Boot ROM

CSORBT — Chip-Select Option Register Boot ROM

\$YFFA4A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOD E	BYTE[1:0]		R/W	[1:0]	STRB		DSACK[3:0]		SPACE[1:0]		IPL[2:0]		AVEC		
RES	SET:														
0	1	1	1	1	0	1	1	0	1	1	1	0	0	0	0

D.2.21 Chip-Select Option Registers

CSOR[0:10] — Chip-Select Option Registers

\$YFFA4E-YFFA76

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOD E	BYTE[1:0] R		R/W	[1:0]	STRB	RB DSACK[3:0]		SPACE[1:0]			IPL[2:0]		AVEC		
RES	SET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CSORBT and CSOR[0:10] contain parameters that support bootstrap operations from peripheral memory devices. Bit and field definitions for CSORBT and CSOR[0:10] are the same.

MODE — Asynchronous/Synchronous Mode

0 = Asynchronous mode selected.

1 = Synchronous mode selected.

In asynchronous mode, chip-select assertion is synchronized with \overline{AS} and \overline{DS} .

In synchronous mode, the $\overline{\text{DSACK}}$ field is not used because a bus cycle is only performed as a synchronous operation. When a match condition occurs on a chip-select programmed for synchronous operation, the chip-select signals the EBI that an Eclock cycle is pending. Refer to **5.3 System Clock** for more information on ECLK.

BYTE[1:0] — Upper/Lower Byte Option

This field is used only when the chip-select 16-bit port option is selected in the pin assignment register. **Table D-14** shows upper/lower byte options.

BYTE[1:0]	Description
00	Disable
01	Lower byte
10	Upper byte
11	Both bytes

Table D-14 BYTE Field Bit Encoding

R/W[1:0]— Read/Write

This field causes a chip-select to be asserted only for a read, only for a write, or for both read and write. **Table D-15** shows the options.

Table D-15 Read/Write Field Bit Encoding

R/W[1:0]	Description						
00	Disable						
01	Read only						
10	Write only						
11	Read/Write						

STRB — Address Strobe/Data Strobe

This bit controls the timing for assertion of a chip-select in asynchronous mode. Selecting address strobe causes the chip-select to be asserted synchronized with address strobe. Selecting data strobe causes the chip-select to be asserted synchronized with data strobe.

- 0 = Address strobe
- 1 = Data strobe

DSACK[3:0] — Data Strobe Acknowledge

This field specifies the source of \overrightarrow{DSACK} in asynchronous mode. It also allows the user to adjust bus timing with internal \overrightarrow{DSACK} generation by controlling the number of wait states that are inserted to optimize bus speed in a particular application. Table D-16 shows the $\overrightarrow{DSACK}[3:0]$ field encoding. The fast termination encoding (%1110) effectively corresponds to -1 wait states.

Table D-16 DSACK F	ield Encoding
--------------------	---------------

DSACK[3:0]	Clock Cycles Required Per Access	Wait States Inserted Per Access		
0000	3	0		
0001	4	1		
0010	5	2		
0011	6	3		
0100	7	4		
0101	8	5		
0110	9	6		
0111	10	7		
1000	11	8		
1001	12	9		
1010	13	10		
1011	14	11		
1100	15	12		
1101	16	13		
1110	2	Fast Termination		
1111	_	External DSACK		

SPACE[1:0] — Address Space Select

Use this option field to select an address space for the chip-select logic. The CPU32 normally operates in supervisor or user space, but interrupt acknowledge cycles must take place in CPU space. **Table D-17** shows address space bit encodings.

Table D-17 Address Space Bit Encodings

SPACE[1:0]	Address Space
00	CPU Space
01	User Space
10	Supervisor Space
11	Supervisor/User Space

IPL[2:0] — Interrupt Priority Level

When SPACE[1:0] is set for CPU space (%00), chip-select logic can be used for interrupt acknowledge. During an interrupt acknowledge cycle, the priority level on address lines ADDR[3:1] is compared to the value in IPL[2:0]. If the values are the same, a chip-select can be asserted, provided other option register conditions are met. **Table D-18** shows IPL[2:0] field encoding.

IPL[2:0]	Interrupt Priority Level				
000	Any Level				
001	1				
010	2				
011	3				
100	4				
101	5				
110	6				
111	7				

Table D-18 Interrupt Priority Level Field Encoding

This field only affects the response of chip-selects and does not affect interrupt recognition by the CPU32.

AVEC — Autovector Enable

This field selects one of two methods of acquiring an interrupt vector during an interrupt acknowledge cycle. It is not usually used with a chip-select pin.

0 = External interrupt vector enabled

1 = Autovector enabled

If the chip select is configured to trigger on an interrupt acknowledge cycle (SPACE[1:0] = %00) and the AVEC field is set to one, the chip-select automatically generates AVEC in response to the interrupt acknowledge cycle. Otherwise, the vector must be supplied by the requesting device.

D.2.22 Master Shift Registers

\$YFFA30
\$YFFA32
\$YFFA34
\$YFFA36

D.2.25 Test Submodule Control Register

CREG — Test Submodule Control Register Used for factory test only.

D.2.26 Distributed Register

DREG — Distributed Register

Used for factory test only.

D.3 Standby RAM Module with TPU Emulation Capability (TPURAM)

Table D-19 is the TPURAM address map. TPURAM responds to both program and data space accesses. The RASP bit in TRAMMCR determines whether the processor must be operating in supervisor mode to access the array. TPURAM control registers are accessible in supervisor mode only.

Table D-19 TPURAM Address Map

Address ¹	15	0
\$YFFB00	TPURAM Module Configuration Register (TRAMMCR)	
\$YFFB02	TPURAM Test Register (TRAMTST)	
\$YFFB04	TPURAM Base Address and Status Register (TRAMBAR)	
\$YFFB06-\$YFFB3F	Not Used	

NOTES:

1. Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

D.3.1 TPURAM Module Configuration Register

TRAMMCR — TPURAM Module Configuration Register

15	14	13	12	11	10	9	8	7		0
STOP	0	0	0	0	0	0	RASP		NOT USED	
RES	SET:									
0	0	0	0	0	0	0	1			

STOP — Low-Power Stop Mode Enable

0 = TPURAM operates normally.

1 = TPURAM enters low-power stop mode.

This bit controls whether TPURAM operates normally or enters low-power stop mode. In low-power stop mode, the array retains its contents, but cannot be read or written.

RASP — TPURAM Array Space

- 0 = TPURAM is accessible in supervisor or user space.
- 1 = TPURAM is accessible in supervisor space only.

\$YFFA3A

\$YFFB00

\$YFFA38

D.3.2 TPURAM Test Register

TRAMTST — TPURAM Test Register

\$YFFB02

Used for factory test only.

D.3.3 TPURAM Module Configuration Register

TRA	TRAMBAR — TPURAM Base Address and Status Register														
15 14 13 12 11 10 9 8 7 6 5 4 3 2														1	0
ADDR 23	ADDR 22	ADDR 21	ADDR 20	ADDR 19	ADDR 18	ADDR 17	ADDR 16	ADDR 15	ADDR 14	ADDR 13	ADDR 12	0	0	0	RAMDS
RES	RESET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ADDR[23:11] — TPURAM Array Base Address

These bits specify ADDR[23:12] of the base address of the TPURAM array when enabled. The 2-Kbyte array resides at the lower end of the 4-Kbyte page into which it is mapped.

RAMDS — RAM Array Disable

0 = RAM array is enabled.

1 = RAM array is disabled.

RAMDS indicates whether the TPURAM is active or disabled. The array is disabled at reset. Writing a valid base address into TRAMBAR clears the RAMDS bit and enables the array.

D.4 Queued Serial Module

Table D-20 shows the QSM address map. The column labeled "Access" indicates the privilege level at which the CPU32 must be operating to access the register. A designation of "S" indicates that supervisor mode is required. A designation of "S/U" indicates that the register can be programmed for either supervisor mode access or unrestricted access.

Table D-20 QSM Address Map

Access	Address ¹	15 8	7 0						
S	\$YFFC00	QSM Module Configura	tion Register (QSMCR)						
S	\$YFFC02	QSM Test Reg	jister (QTEST)						
S	\$YFFC04	QSM Interrupt Level Register (QILR)	QSM Interrupt Vector Register (QIVR)						
S/U	\$YFFC06	Not l	Jsed						
S/U	\$YFFC08	SCI Control 0 R	egister (SCCR0)						
S/U	\$YFFC0A	SCI Control 1 R	egister (SCCR1)						
S/U	\$YFFC0C	SCI Status Re	gister (SCSR)						
S/U	\$YFFC0E	SCI Data Rec	gister (SCDR)						
S/U	\$YFFC10	Not l	Jsed						
S/U	\$YFFC12	Not l	Jsed						
S/U	\$YFFC14	Not Used	PQS Data Register (PORTQS)						
S/U	\$YFFC16	PQS Pin Assignment Register (PQSPAR)	PQS Data Direction Register (DDRQS)						
S/U	\$YFFC18	SPI Control Reg	jister 0 (SPCR0)						
S/U	\$YFFC1A	SPI Control Reg	ister 1 (SPCR1)						
S/U	\$YFFC1C	SPI Control Reg	ister 2 (SPCR2)						
S/U	\$YFFC1E	SPI Control Register 3 (SPCR3)	SPI Status Register (SPSR)						
S/U	\$YFFC20 – \$YFFCFF	Not l	Jsed						
S/U	\$YFFD00 – \$YFFD1F	Receive RAM (RR[0:F])							
S/U	\$YFFD20 – \$YFFD3F	Transmit RAM (TR[0:F])							
S/U	\$YFFD40 – \$YFFD4F	Command R	AM (CR[0:F])						

NOTES:

1. Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

D.4.1 QSM Configuration Register

QSMO	CR —	QSM	Confi	gurat	ion Re	egiste	r							\$YFF	-C00	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
STOP	FRZ1	FRZ0	0	0	0	0	0	SUPV	0	0	0	IARB[3:0]				
RESET	:															
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
~ ~ ~																

QSMCR bits enable stop and freeze modes, and determine the arbitration priority of QSM interrupt requests.

STOP — Low-Power Stop Mode Enable

0 = QSM clock operates normally.

1 = QSM clock is stopped.

When STOP is set, the QSM enters low-power stop mode. The system clock input to the module is disabled. While STOP is set, only QSMCR reads are guaranteed to be valid, but writes to the QSPI RAM and other QSM registers are guaranteed valid. The SCI receiver and transmitter must be disabled before STOP is set. To stop the QSPI,

set the HALT bit in SPCR3, wait until the HALTA flag is set, then set STOP.

FRZ1— FREEZE Assertion Response

FRZ1 determines what action is taken by the QSPI when the IMB FREEZE signal is asserted.

- 0 = Ignore the IMB FREEZE signal.
- 1 = Halt the QSPI on a transfer boundary.
- FRZ0 Not Implemented
- Bits [12:8] Not Implemented
- SUPV Supervisor/Unrestricted Data Space
 - The SUPV bit places the QSM registers in either supervisor or user data space.
 - 0 = Registers with access controlled by the SUPV bit are accessible in either supervisor or user mode.
 - 1 = Registers with access controlled by the SUPV bit are restricted to supervisor access only.

Bits [6:4] — Not Implemented

IARB[3:0] — Interrupt Arbitration ID

The IARB field is used to arbitrate between simultaneous interrupt requests of the same priority. Each module that can generate interrupt requests must be assigned a unique, non-zero IARB field value.

D.4.2 QSM Test Register

Used for factory test only.

D.4.3 QSM Interrupt Level Register

QILR	— Q	SM In	terrup	ot Lev	els Re	egiste	r							\$YFF	C04
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	IL	QSPI[2:	0]	I	LSCI[2:0)]	QIVR							
RE	SET:														
0	0	0	0	0	0	0	0								

The values of ILQSPI[2:0] and ILSCI[2:0] in QILR determine the priority of QSPI and SCI interrupt requests.

ILQSPI[2:0] — Interrupt Level for QSPI

When an interrupt request is made, ILQSPI value determines which of the interrupt request signals is asserted; when a request is acknowledged, the QSM compares this value to a mask value supplied by the CPU32 to determine whether to respond. ILQS-PI must have a value in the range \$0 (interrupts disabled) to \$7 (highest priority).

ILSCI[2:0] — Interrupt Level for SCI

\$YFFC02

When an interrupt request is made, ILSCI value determines which of the interrupt request signals is asserted. When a request is acknowledged, the QSM compares this value to a mask value supplied by the CPU32 to determine whether to respond. The field must have a value in the range \$0 (interrupts disabled) to \$7 (highest priority). If ILQSPI[2:0] and ILSCI[2:0] have the same non-zero value, and both submodules simultaneously request interrupt service, the QSPI has priority.

D.4.4 QSM Interrupt Vector Register

QIVR	— Q	SM In	iterrup	ot Veo	ctor Re	egiste	er							\$YFF	C05
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			QI	LR							INT∖	/[7:0]			
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 QILR INTV[7:0] RESET: 0 0 0 1 1 1 1															
								0	0	0	0	1	1	1	1

QIVR determines the value of the interrupt vector number the QSM supplies when it responds to an interrupt acknowledge cycle. At reset, QIVR is initialized to \$0F, the uninitialized interrupt vector number. To use interrupt-driven serial communication, a user-defined vector number must be written to QIVR.

INTV[7:0] — Interrupt Vector Number

The values of INTV[7:1] are the same for both QSPI and SCI interrupt requests; the value of INTV0 used during an interrupt acknowledge cycle is supplied by the QSM. INTV0 is at logic level zero during an SCI interrupt and at logic level one during a QSPI interrupt. A write to INTV0 has no effect. Reads of INTV0 return a value of one.

MC68332

USER'S MANUAL

D.4.5 SCI Control Register

SCCRO	SCCR0 — SCI Control Register 0 \$YFFC08															
15 13 12 11 10 9 8 7 6 5 4 3 2 1														0		
NOT USED SCBR[12:0]																
RESET:																
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

SCCR0 contains the SCI baud rate selection field. Baud rate must be set before the SCI is enabled. The CPU32 can read and write SCCR0 at any time. Changing the value of SCCR0 bits during a transfer operation can disrupt the transfer.

Bits [15:13] — Not Implemented

SCBR[12:0] - SCI Baud Rate

SCI baud rate is programmed by writing a 13-bit value to this field. Writing a value of zero to SCBR disables the baud rate generator. Baud clock rate is calculated as follows:

SCI Baud Rate =
$$\frac{f_{sys}}{32 \times SCBR[12:0]}$$

or

SCBR[12:0] = $\frac{f_{sys}}{32 \times SCI Baud Rate Desired}$

where SCBR[12:0] is in the range of 1 to 8191.

D.4.6 SCI Control Register 1

SCCR	1 — SC	CI Cor	ntrol F	Regist	er 1								9	\$YFF(C0A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	LOOPS	WOM S	ILT	PT	PE	М	WAK E	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
RESET:															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SCCR1 contains SCI configuration parameters, including transmitter and receiver enable bits, interrupt enable bits, and operating mode enable bits. SCCR0 can be read or written at any time. The SCI can modify the RWU bit under certain circumstances. Changing the value of SCCR1 bits during a transfer operation can disrupt the transfer.

Bit 15 — Not Implemented

LOOPS — Loop Mode

0 = Normal SCI operation, no looping, feedback path disabled.

- 1 = Test SCI operation, looping, feedback path enabled.
- WOMS Wired-OR Mode for SCI Pins
 - 0 = If configured as an output, TXD is a normal CMOS output.
 - 1 = If configured as an output, TXD is an open-drain output.
- ILT Idle-Line Detect Type
 - 0 = Short idle-line detect (start count on first one).
 - 1 = Long idle-line detect (start count on first one after stop bit(s)).
- PT Parity Type

0 = Even parity

- 1 = Odd parity
- PE Parity Enable
 - 0 = SCI parity disabled.
 - 1 = SCI parity enabled.
- M Mode Select
 - 0 = 10-bit SCI frame
 - 1 = 11-bit SCI frame
- WAKE Wakeup by Address Mark
 - 0 = SCI receiver awakened by idle-line detection.
 - 1 = SCI receiver awakened by address mark (last bit set).
- TIE Transmit Interrupt Enable
 - 0 = SCI TDRE interrupts disabled.
 - 1 = SCI TDRE interrupts enabled.
- TCIE Transmit Complete Interrupt Enable
 - 0 = SCI TC interrupts disabled.
 - 1 = SCI TC interrupts enabled.
- RIE Receiver Interrupt Enable
 - 0 = SCI RDRF and OR interrupts disabled.
 - 1 = SCI RDRF and OR interrupts enabled.
- ILIE Idle-Line Interrupt Enable
 - 0 = SCI IDLE interrupts disabled.
 - 1 = SCI IDLE interrupts enabled.
- TE Transmitter Enable
 - 0 = SCI transmitter disabled (TXD pin can be used as I/O).
 - 1 = SCI transmitter enabled (TXD pin dedicated to SCI transmitter).
- RE Receiver Enable
 - 0 = SCI receiver disabled.
 - 1 = SCI receiver enabled.
- RWU Receiver Wakeup

0 = Normal receiver operation (received data recognized).

1 = Wakeup mode enabled (received data ignored until receiver is awakened).

SBK — Send Break

- 0 = Normal operation
- 1 = Break frame(s) transmitted after completion of current frame.

D.4.7 SCI Status Register

SCSR — SCI Status Registe	эr
---------------------------	----

15						9	8	7	6	5	4	3	2	1	0
		NO	TUSED)			TDRE	TC	RDRF	RAF	IDLE	OR	NF	FE	PF
RESET:															
0	~	~	~	~	•	~	-	4	~	~	~	0	~	0	~

SCSR contains flags that show SCI operating conditions. These flags are cleared either by SCI hardware or by a read/write sequence. The sequence consists of reading SCSR, then reading or writing SCDR.

If an internal SCI signal for setting a status bit comes after reading the asserted status bits, but before writing or reading SCDR, the newly set status bit is not cleared. SCSR must be read again with the bit set and SCDR must be read or written before the status bit is cleared.

A long-word read can consecutively access both SCSR and SCDR. This action clears receive status flag bits that were set at the time of the read, but does not clear TDRE or TC flags. Reading either byte of SCSR causes all 16 bits to be accessed, and any status bit already set in either byte is cleared on a subsequent read or write of SCDR.

TDRE — Transmit Data Register Empty

- 0 = Transmit data register still contains data to be sent to the transmit serial shifter.
- 1 = A new character can now be written to the transmit data register.
- TC Transmit Complete
 - 0 = SCI transmitter is busy.
 - 1 = SCI transmitter is idle.
- RDRF Receive Data Register Full
 - 0 = Receive data register is empty or contains previously read data.
 - 1 = Receive data register contains new data.
- RAF Receiver Active
 - 0 = SCI receiver is idle.
 - 1 = SCI receiver is busy.
- IDLE Idle-Line Detected
 - 0 = SCI receiver did not detect an idle-line condition.
 - 1 = SCI receiver detected an idle-line condition.

\$YFFC0C

OR — Overrun Error

- 0 = Receive data register is empty and can accept data from the receive serial shifter.
- 1 = Receive data register is full and cannot accept data from the receive serial shifter. Any data in the shifter is lost and RDRF remains set.
- NF Noise Error Flag
 - 0 = No noise detected in the received data.
 - 1 = Noise detected in the received data.

FE — Framing Error

- 0 = No framing error detected in the received data.
- 1 = Framing error or break detected in the received data.

PF — Parity Error

- 0 = No parity error detected in the received data.
- 1 = Parity error detected in the received data.

D.4.8 SCI Data Register

SCDR — SCI Data Register

\$YFFC0E

				0											
15						9	8	7	6	5	4	3	2	1	0
		NC	DT USEI	C			R8/T8	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0
RESET:															
0	0	Ο	0	0	0	0	11	11			11		11	11	11

SCDR consists of two data registers located at the same address. The receive data register (RDR) is a read-only register that contains data received by the SCI serial interface. Data comes into the receive serial shifter and is transferred to RDR. The transmit data register (TDR) is a write-only register that contains data to be transmitted. Data is first written to TDR, then transferred to the transmit serial shifter, where additional format bits are added before transmission. R[7:0]/T[7:0] contain either the first eight data bits received when SCDR is read, or the first eight data bits to be transmitted when SCDR is written. R8/T8 are used when the SCI is configured for nine-bit operation. When the SCI is configured for 8-bit operation, R8/T8 have no meaning or effect.

D.4.9 Port QS Data Register

PORTQS — Port QS Data Register								\$YFF	C15
15	8	7	6	5	4	3	2	1	0
NOT USED		PQS7	PQS6	PQS5	PQS4	PQS3	PQS2	PQS1	PQS0
RESET		-							
		0	0	0	0	0	0	0	0

PORTQS latches I/O data. Writes drive pins defined as outputs. Reads return data present on the pins. To avoid driving undefined data, first write a byte to PORTQS, then configure DDRQS.

D.4.10 Port QS Pin Assignment Register/Data Direction Register

PQ: DD	PQSPAR — PORT QS Pin Assignment Register\$YFFC16DDRQS — PORT QS Data Direction Register\$YFFC17														C16 C17
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	PQSP A6	PQSP A5	PQSPA 4	PQSP A3	0	PQSPA 1	PQSP A0	DDQS 7	DDQS 6	DDQS 5	DDQS 4	DDQS 3	DDQS 2	DDQS 1	DDQS 0
R	ESET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Clearing a bit in PQSPAR assigns the corresponding pin to general-purpose I/O; setting a bit assigns the pin to the QSPI. PQSPAR does not affect operation of the SCI. **Table D-21** displays PQSPAR pin assignments.

PQSPAR Field	PQSPAR Bit	Pin Function
PQSPA0	0 1	PQS0 MISO
PQSPA1	0 1	PQS1 MOSI
_		PQS2 ¹ SCK
PQSPA3	0 1	PQS3 PCS0/SS
PQSPA4	0 1	PQS4 PCS1
PQSPA5	0 1	PQS5 PCS2
PQSPA6	0 1	PQS6 PCS3
_		PQS7 ² TXD

Table D-21 PQSPAR Pin Assignments

NOTES:

1. PQS2 is a digital I/O pin unless the SPI is enabled (SPE in SPCR1 set), in which case it becomes the QSPI serial clock SCK.

 PQS7 is a digital I/O pin unless the SCI transmitter is enabled (TE in SCCR1 = 1), in which case it becomes the SCI serial output TXD.

DDRQS determines whether pins configured for general purpose I/O are inputs or outputs. Clearing a bit makes the corresponding pin an input; setting a bit makes the pin an output. DDRQS affects both QSPI function and I/O function. **Table D-22** shows the effect of DDRQS on QSM pin function.

Table D-22 Effect of DDRQS on QSM Pin Function

QSM Pin	Mode	DDRQS Bit	Bit State	Pin Function
	Mactor		0	Serial data input to QSPI
MIGO	Master	00000	1	Disables data input
WII3O	Slave	DDQ30	0	Disables data output
	Slave		1	Serial data output from QSPI
	Mactor		0	Disables data output
MOSI	Master	00091	1	Serial data output from QSPI
WO31	Slave	DDQ31	0	Serial data input to QSPI
	Slave		1	Disables data input
cov1	Master	00092	—	Clock output from QSPI
SCK	Slave	DDQ32	_	Clock input to QSPI
	Mactor		0	Assertion causes mode fault
	Master	00000	1	Chip-select output
FC30/33	Slave	00000	0	QSPI slave select input
	Slave		1	Disables slave select Input
	Mactor		0	Disables chip-select output
DC6[1:2]	Master		1	Chip-select output
FC3[1.3]	Slave	0003[4.0]	0	Inactive
	Slave		1	Inactive
TXD ²	—	DDQS7	Х	Serial data output from SCI
RXD	_	None	NA	Serial data input to SCI

NOTES:

1. PQS2 is a digital I/O pin unless the SPI is enabled (SPE set in SPCR1), in which case it becomes the QSPI serial clock SCK.

2. PQS7 is a digital I/O pin unless the SCI transmitter is enabled (TE set in SCCR1), in which case it becomes the SCI serial data output TXD.

DDRQS determines the direction of the TXD pin only when the SCI transmitter is disabled. When the SCI transmitter is enabled, the TXD pin is an output.

D.4.11 QSPI Control Register 0

SPCR	0 — C	SPI (Contro	ol Re	gister	0								\$YFF	C18
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSTR	WOM Q		BITS	6[3:0]		CPOL	CPHA				SPB	R[7:0]			
RESET:															
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0

SPCR0 contains parameters for configuring the QSPI and enabling various modes of operation. The CPU32 has read/write access to SPCR0, but the QSM has read access only. SPCR0 must be initialized before QSPI operation begins. Writing a new value to SPCR0 while the QSPI is enabled disrupts operation.

MSTR — Master/Slave Mode Select

0 = QSPI is a slave device.

1 = QSPI is the system master.

- WOMQ Wired-OR Mode for QSPI Pins
 - 0 = Pins designated for output by DDRQS operate in normal mode.
 - 1 = Pins designated for output by DDRQS operate in open-drain mode.

BITS[3:0] — Bits Per Transfer

In master mode, when BITSE is set in a command RAM byte, BITS[3:0] determines the number of data bits transferred. When BITSE is cleared, eight bits are transferred. Reserved values default to eight bits. In slave mode, the command RAM is not used and the setting of BITSE has no effect on QSPI transfers. Instead, the BITS[3:0] field determines the number of bits the QSPI will receive during each transfer before storing the received data.

 Table D-23 shows the number of bits per transfer.

BITS[3:0]	Bits per Transfer
0000	16
0001	Reserved
0010	Reserved
0011	Reserved
0100	Reserved
0101	Reserved
0110	Reserved
0111	Reserved
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Table D-23 Bits Per Transfer

CPOL — Clock Polarity

0 = The inactive state of SCK is logic zero.

1 = The inactive state of SCK is logic one.

CPOL is used to determine the inactive state of the serial clock (SCK). It is used with CPHA to produce a desired clock/data relationship between master and slave devices.

CPHA — Clock Phase

- 0 = Data is captured on the leading edge of SCK and changed on the trailing edge of SCK.
- 1 = Data is changed on the leading edge of SCK and captured on the trailing edge of SCK

CPHA determines which edge of SCK causes data to change and which edge causes

MC68332
USER'S MANUAL

data to be captured. CPHA is used with CPOL to produce a desired clock/data relationship between master and slave devices.

SPBR[7:0] — Serial Clock Baud Rate

The QSPI uses a modulus counter to derive the SCK baud rate from the MCU system clock. Baud rate is selected by writing a value from 2 to 255 into SPBR[7:0]. The following equation determines the SCK baud rate:

SCK Baud Rate =
$$\frac{f_{sys}}{2 \times SPBR[7:0]}$$

or

SPBR[7:0] = $\frac{f_{sys}}{2 \times SCK Baud Rate Desired}$

Giving SPBR[7:0] a value of zero or one disables the baud rate generator. SCK is disabled and assumes its inactive state value. No serial transfers occur. At reset, the SCK baud rate is initialized to one eighth of the system clock frequency.

D.4.12 QSPI Control Register 1

SPCR1	I — C	SPI (Contro	ol Re	gister	1							9	\$YFF	C1A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPE			D	SCKL[6	:0]						DTL	[7:0]			
RESET:															
Δ	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0

SPCR1 enables the QSPI and specified transfer delays. The CPU32 has read/write access to SPCR1, but the QSM has read access only to all bits except SPE. SPCR1 must be written last during initialization because it contains SPE. Writing a new value to SPCR1 while the QSPI is enabled disrupts operation.

SPE — QSPI Enable

0 =QSPI is disabled. QSPI pins can be used for general-purpose I/O.

1 = QSPI is enabled. Pins allocated by PQSPAR are controlled by the QSPI.

DSCKL[6:0] — Delay before SCK

When the DSCK bit is set in a command RAM byte, this field determines the length of the delay from PCS valid to SCK transition. PCS can be any of the four peripheral chipselect pins. The following equation determines the actual delay before SCK:

PCS to SCK Delay =
$$\frac{\text{DSCKL[6:0]}}{f_{\text{sys}}}$$

where DSCKL[6:0] equals is in the range of 1 to 127.

When DSCK is zero in a command RAM byte, then DSCKL[6:0] is not used. Instead, the PCS valid to SCK transition is one-half the SCK period.

DTL[7:0] — Length of Delay after Transfer

When the DT bit is set in a command RAM byte, this field determines the length of the delay after a serial transfer. The following equation is used to calculate the delay:

Delay after Transfer = $\frac{32 \times DTL[7:0]}{System Clock}$

where DTL equals is in the range of 1 to 255. A zero value for DTL[7:0] causes a delay-after-transfer value of $8192 \div f_{sys}$. If DT is zero in a command RAM byte, a standard delay is inserted.

Standard Delay after Transfer =
$$\frac{17}{f_{sys}}$$

Delay after transfer can be used to provide a peripheral deselect interval. A delay can also be inserted between consecutive transfers to allow serial A/D converters to complete conversion.

D.4.13 QSPI Control Register 2

SPCR	2 — C	QSPI (Contro	ol Reg	gister	2							5	\$YFF(C1C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPIFIE	WRE N	WRT O	0		ENDQ	P[3:0]		0	0	0	0		NEWC	QP[3:0]	
RESET:															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPCR2 contains QSPI queue pointers, wraparound mode control bits, and an interrupt enable bit. The CPU32 has read/write access to SPCR2, but the QSM has read access only. SPCR2 is buffered. New SPCR2 values become effective only after completion of the current serial transfer. Rewriting NEWQP in SPCR2 causes execution to restart at the designated location. Reads of SPCR2 return the value of the register, not the buffer.

SPIFIE — SPI Finished Interrupt Enable

- 0 = QSPI interrupts disabled.
- 1 = QSPI interrupts enabled.
- WREN Wrap Enable
 - 0 = Wraparound mode disabled.
 - 1 = Wraparound mode enabled.
- WRTO Wrap To

MC68332 USER'S MANUAL 0 = Wrap to pointer address \$0.

1 = Wrap to address in NEWQP.

Bit 12 - Not Implemented

ENDQP[3:0] — Ending Queue Pointer This field contains the last QSPI queue address.

Bits [7:4] — Not Implemented

NEWQP[3:0] — New Queue Pointer Value This field contains the first QSPI queue address.

D.4.14 QSPI Control Register 3

SPCF	R3 —	QSPI	Cont	rol Re	egister								9	\$YFF	C1E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	LOOP Q	HMIE	HALT				SP	SR			
RES	SET:														
0	0	0	0	0	0	0	0								

SPCR3 contains the loop mode enable bit, halt and mode fault interrupt enable, and the halt control bit. The CPU32 has read/write access to SPCR3, but the QSM has read access only. SPCR3 must be initialized before QSPI operation begins. Writing a new value to SPCR3 while the QSPI is enabled disrupts operation.

Bits [15:11] — Not Implemented

LOOPQ — QSPI Loop Mode

0 = Feedback path disabled.

1 = Feedback path enabled.

LOOPQ controls feedback on the data serializer for testing.

HMIE — HALTA and MODF Interrupt Enable

0 = HALTA and MODF interrupts disabled.

1 = HALTA and MODF interrupts enabled.

HMIE enables interrupt requests generated by the HALTA status flag or the MODF status flag in SPSR.

HALT — Halt QSPI

0 = QSPI operates normally.

1 = QSPI is halted for subsequent restart.

When HALT is set, the QSPI stops on a queue boundary. It remains in a defined state from which it can later be restarted.

D.4.15 QSPI Status Register

SPSF	1 — C	SPI S	Status	Regi	ster									\$YFF	C1F
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			SPO	CR3				SPIF	MOD F	HAL- TA	0		CPTQ	P[3:0]	
RES	SET:							0	0	0	0	0	0	0	0

SPSR contains information concerning the current serial transmission. Only the QSPI can set bits in SPSR. The CPU32 reads SPSR to obtain QSPI status information and writes it to clear status flags.

SPIF — QSPI Finished Flag

0 = QSPI is not finished.

1 = QSPI is finished.

SPIF is set after execution of the command at the address in ENDQP[3:0].

MODF — Mode Fault Flag

- 0 = Normal operation.
- 1 = Another SPI node requested to become the network SPI master while the QSPI was enabled in master mode (SS input taken low).

The QSPI asserts MODF when the QSPI is in master mode (MSTR = 1) and the \overline{SS} input pin is negated by an external driver.

HALTA — Halt Acknowledge Flag

- 0 = QSPI is not halted.
- 1 = QSPI is halted.

HALTA is set when the QSPI halts in response to setting the SPCR3 HALT bit.

Bit 4 — Not Implemented

CPTQP[3:0] — Completed Queue Pointer

CPTQP[3:0] points to the last command executed. It is updated when the current command is complete. When the first command in a queue is executing, CPTQP[3:0] contains either the reset value \$0 or a pointer to the last command completed in the previous queue.

D.4.16 Receive Data RAM

RR[0:F] — Receive Data RAM

Data received by the QSPI is stored in this segment. The CPU32 reads this segment to retrieve data from the QSPI. Data stored in receive RAM is right-justified. Unused bits in a receive queue entry are set to zero by the QSPI upon completion of the individual queue entry. Receive RAM data can be accessed using byte, word, or long-word addressing.

D.4.17 Transmit Data RAM

TR[0:F] — Transmit Data RAM

Data that is to be transmitted by the QSPI is stored in this segment. The CPU32 normally writes one word of data into this segment for each queue command to be executed. Information to be transmitted must be written to transmit data RAM in a rightjustified format. The QSPI cannot modify information in the transmit data RAM. The QSPI copies the information to its data serializer for transmission. Information remains in transmit RAM until overwritten.

D.4.18 Command RAM

CR[0:F] — Command RAM

7 6 5 4 3 2 1 0 BITSE DT PCS3 PCS2 PCS1 CONT DSCK PCS0¹ CONT BITSE DT DSCK PCS3 PCS2 PCS1 PCS0¹ COMMAND CONTROL PERIPHERAL CHIP SELECT

NOTES:

1. The PCS0 bit represents the dual-function $PCS0/\overline{SS}$.

Command RAM is used by the QSPI when in master mode. The CPU32 writes one byte of control information to this segment for each QSPI command to be executed. The QSPI cannot modify information in command RAM.

Command RAM consists of 16 bytes. Each byte is divided into two fields. The peripheral chip-select field enables peripherals for transfer. The command control field provides transfer options.

A maximum of 16 commands can be in the queue. Queue execution proceeds from the address in NEWQP through the address in ENDQP (both of these fields are in SPCR2).

CONT — Continue

- 0 = Control of chip selects returned to PORTQS after transfer is complete.
- 1 = Peripheral chip selects remain asserted after transfer is complete.

BITSE — Bits per Transfer Enable

- 0 = Eight bits
- 1 = Number of bits set in BITS field of SPCR0.
- DT Delay after Transfer
 - 0 = Delay after transfer is $17 \div f_{sys}$.
 - 1 = SPCR1 DTL[7:0] specifies delay after transfer PCS valid to SCK.
- DSCK PCS to SCK Delay

\$YFFD40 - \$YFFD4F

\$YFFD20 – \$YFFD3F

lov after Transfer

- 0 = PCS valid to SCK delay is one-half SCK.
- 1 = SPCR1 DSCKL[6:0] specifies delay from PCS valid to SCK.

PCS[3:0] — Peripheral Chip Select

Use peripheral chip-select bits to select an external device for serial data transfer. More than one peripheral chip select may be activated at a time, and more than one peripheral chip can be connected to each PCS pin, provided proper fanout is observed. PCS0 shares a pin with the slave select (SS) signal, which initiates slave mode serial transfer. If \overline{SS} is taken low when the QSPI is in master mode, a mode fault occurs.

D.5 Time Processor Unit (TPU)

Table D-24 shows the TPU address map. The column labeled "Access" indicates the privilege level at which the CPU32 must be operating to access the register. A designation of "S" indicates that supervisor mode is required. A designation of "S/U" indicates that the register can be programmed for either supervisor mode access or unrestricted access.

Access	Address ¹	15 0
S	\$YFFE00	Module Configuration Register (TPUMCR)
S	\$YFFE02	Test Configuration Register (TCR)
S	\$YFFE04	Development Support Control Register (DSCR)
S	\$YFFE06	Development Support Status Register (DSSR)
S	\$YFFE08	TPU Interrupt Configuration Register (TICR)
S	\$YFFE0A	Channel Interrupt Enable Register (CIER)
S	\$YFFE0C	Channel Function Selection Register 0 (CFSR0)
S	\$YFFE0E	Channel Function Selection Register 1 (CFSR1)
S	\$YFFE10	Channel Function Selection Register 2 (CFSR2)
S	\$YFFE12	Channel Function Selection Register 3 (CFSR3)
S/U	\$YFFE14	Host Sequence Register 0 (HSQR0)
S/U	\$YFFE16	Host Sequence Register 1 (HSQR1)
S/U	\$YFFE18	Host Service Request Register 0 (HSRR0)
S/U	\$YFFE1A	Host Service Request Register 1 (HSRR1)
S	\$YFFE1C	Channel Priority Register 0 (CPR0)
S	\$YFFE1E	Channel Priority Register 1 (CPR1)
S	\$YFFE20	Channel Interrupt Status Register (CISR)
S	\$YFFE22	Link Register (LR)
S	\$YFFE24	Service Grant Latch Register (SGLR)
S	\$YFFE26	Decoded Channel Number Register (DCNR)

Table D-24 TPU Register Map

NOTES:

1. Y = M111, where M represents the logic state of the module mapping (MM) bit in the SIMCR.

D.5.1 TPU Module Configuration Register

TPUN	TPUMCR — TPU Module Configuration Register\$YFFE00														E00
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STOP	TCR1	P[1:0]	TCR2	P[1:0]	EMU T2CG STF SUPV PSCK 0						0		IARE	8[3:0]	
RES	SET:														
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

STOP — Low-Power Stop Mode Enable

0 = Enable TPU clocks.

1 = Disable TPU clocks.

TCR1P[1:0] — Timer Count Register 1 Prescaler Control

TCR1 is clocked from the output of a prescaler. The prescaler's input is the internal TPU system clock divided by either 4 or 32, depending on the value of the PSCK bit. The prescaler divides this input by 1, 2, 4, or 8. Channels using TCR1 have the capability to resolve down to the TPU system clock divided by four. **Table D-25** is a summary of prescaler output.

 Table D-25 TCR1 Prescaler Control Bits

	Prescaler	TCR1 Clock Input						
	Divide By	PSCK = 0	PSCK = 1					
00	1	f _{sys} ÷ 32	$f_{sys} \div 4$					
01	2	f _{sys} ÷ 64	f _{sys} ÷ 8					
10	4	f _{sys} ÷ 128	f _{sys} ÷ 16					
11	8	f _{sys} ÷ 256	f _{sys} ÷ 32					

TCR2P[1:0] — Timer Count Register 2 Prescaler Control

TCR2 is clocked from the output of a prescaler. If T2CG = 0, the input to the TCR2 prescaler is the external TCR2 clock source. If T2CG = 1, the input is the TPU system clock divided by eight. The TCR2P field specifies the value of the prescaler: 1, 2, 4, or 8. Channels using TCR2 have the capability to resolve down to the TPU system clock divided by eight. Table D-26 is a summary of prescaler output.

TCR2P[1:0]	Prescaler Divide By	Internal Clock Divided By	External Clock Divided By
00	1	8	1
01	2	16	2
10	4	32	4
11	8	64	8

EMU — Emulation Control

In emulation mode, the TPU executes microinstructions from TPURAM exclusively. Access to the TPURAM module via the IMB is blocked, and the TPURAM module is dedicated for use by the TPU. After reset, this bit can be written only once.

0 = TPU and TPURAM operate normally.

1 = TPU and TPURAM operate in emulation mode.

T2CG — TCR2 Clock/Gate Control

When T2CG is set, the external TCR2 pin functions as a gate of the DIV8 clock (the TPU system clock divided by eight). In this case, when the external TCR2 pin is low, the DIV8 clock is blocked, preventing it from incrementing TCR2. When the external TCR2 pin is high, TCR2 is incremented at the frequency of the DIV8 clock. When T2CG is cleared, an external clock input from the TCR2 pin, which has been synchronized and fed through a digital filter, increments TCR2.

0 = TCR2 pin used as clock source for TCR2.

1 = TCR2 pin used as gate of DIV8 clock for TCR2.

STF — Stop Flag

0 = TPU is operating.

1 = TPU is stopped (STOP bit has been set).

SUPV — Supervisor/Unrestricted

0 = Assignable registers are accessible in user or supervisor mode.

1 = Assignable registers are accessible in supervisor mode only.

PSCK — Prescaler Clock

 $0 = f_{svs} \div 32$ is input to TCR1 prescaler.

 $1 = f_{svs} \div 4$ is input to TCR1 prescaler.

IARB[3:0] — Interrupt Arbitration ID

The IARB field is used to arbitrate between simultaneous interrupt requests of the same priority. Each module that can generate interrupt requests must be assigned a unique, non-zero IARB field value.

D.5.2 Test Configuration Register

TCR — Test Configuration Register

Used for factory test only.

D.5.3 Development Support Control Register

DSCR — Development Support Control Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HOT4		NOT	USED		BLC	CLKS	FRZ	[1:0]	CCL	BP	BC	BH	BL	BM	BT
RES	SET:														
0					0	0	0	0	0	0	0	0	0	0	0

HOT4 — Hang on T4

0 = Exit wait on T4 state caused by assertion of HOT4.

1 = Enter wait on T4 state.

BLC — Branch Latch Control

0 = Latch conditions into branch condition register before exiting halted state.

1 = Do not latch conditions into branch condition register before exiting the halted

\$YFFE04

\$YFFE02

state or during the time-slot transition period.

CLKS — Stop Clocks (to TCRs)

- 0 = Do not stop TCRs.
- 1 = Stop TCRs during the halted state.

FRZ[1:0] — FREEZE Assertion Response

The FRZ bits specify the TPU microengine response to the IMB FREEZE signal. Refer to **Table D-27**.

Table D-27 FRZ[1:0] Encoding

FRZ[1:0]	TPU Response
00	Ignore freeze
01	Reserved
10	Freeze at end of current microcycle
11	Freeze at next time-slot boundary

CCL — Channel Conditions Latch

CCL controls the latching of channel conditions (MRL and TDL) when the CHAN register is written.

- 0 = Only the pin state condition of the new channel is latched as a result of the write CHAN register microinstruction.
- 1 = Pin state, MRL, and TDL conditions of the new channel are latched as a result of a write CHAN register microinstruction.

BP, BC, BH, BL, BM, and BT — Breakpoint Enable Bits

These bits are TPU breakpoint enables. Setting a bit enables a breakpoint condition. **Table D-28** shows the different breakpoint enable bits.

Table D-28 Breakpoint Enable Bits

Enable Bit	Function
BP	Break if μ PC equals μ PC breakpoint register
BC	Break if CHAN register equals channel breakpoint register at beginning of state or when CHAN is changed through microcode
BH	Break if host service latch is asserted at beginning of state
BL	Break if link service latch is asserted at beginning of state
BM	Break if MRL is asserted at beginning of state
BT	Break if TDL is asserted at beginning of state

D.5.4 Development Support Status Register

DSS	DSSR — Development Support Status Register														\$YFFE06		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	0	BKPT	PCBK	CHBK	SRBK	TPUF	0	0	0		
RES	BET:																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

BKPT — Breakpoint Asserted Flag

If an internal breakpoint caused the TPU to enter the halted state, the TPU asserts the BKPT signal on the IMB and sets the BKPT flag. BKPT remains set until the TPU recognizes a breakpoint acknowledge cycle, or until the IMB FREEZE signal is asserted.

PCBK — μ PC Breakpoint Flag

PCBK is asserted if a breakpoint occurs because of a μ PC (microprogram counter) register match with the μ PC breakpoint register. PCBK is negated when the BKPT flag is cleared.

CHBK — Channel Register Breakpoint Flag

CHBK is asserted if a breakpoint occurs because of a CHAN register match with the CHAN register breakpoint register. CHBK is negated when the BKPT flag is cleared.

SRBK — Service Request Breakpoint Flag

SRBK is asserted if a breakpoint occurs because of any of the service request latches being asserted along with their corresponding enable flag in the development support control register. SRBK is negated when the BKPT flag is cleared.

TPUF — TPU FREEZE Flag

TPUF is set whenever the TPU is in a halted state as a result of FREEZE being asserted. This flag is automatically negated when the TPU exits the halted state because of FREEZE being negated.

D.5.5 TPU Interrupt Configuration Register

TICR — TPU Interrupt Cont	\$YFF	E08									
15	10	9	8	7	6	5	4	3		0	
NOT USED	NOT USED CIRL[2:0] CIBV[3:0]										
RESET:											
	0	0	0	0	0	0	0				

CIRL[2:0] — Channel Interrupt Request Level

This three-bit field specifies the interrupt request level for all channels. Level seven for this field indicates a non-maskable interrupt; level zero indicates that all channel interrupts are disabled.

CIBV[3:0] — Channel Interrupt Base Vector

The TPU is assigned 16 unique interrupt vector numbers, one vector number for each channel. The CIBV field specifies the most significant nibble of all 16 TPU channel interrupt vector numbers. The lower nibble of the TPU interrupt vector number is determined by the channel number on which the interrupt occurs.

D.5.6 Channel Interrupt Enable Register

CIER	l — Cl	nanne	l Inter	rupt E	Enable	Regi	ster							\$YFF	E0A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH 15	CH 14	CH 13	CH 12	CH 11	CH 10	CH 9	CH 8	CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0
RES 0	SET: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH[1	5:0] — 0 = 0 1 = 0	- Cha Chanr Chanr	nnel I nel int nel int	nterru errup errup	upt En ts disa ts ena	able/ Ibled bled	Disab	le							
D.5.7	' Char	nnel F	uncti	ion S	elect	Regis	sters								
CFSR0 — Channel Function Select Register 0 \$YFFE00														E0C	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHAN	NEL 15			CHANN	IEL 14			CHANI	NEL 13			CHAN	NEL 12	
RES 0	SET: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CFSF	R1 —	Chanr	nel Fu	Inctior	n Sele	ct Re	gister	1						\$YFF	E0E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHAN	NEL 11			CHANN	IEL 10			CHAN	NEL 9			CHAN	NEL 8	
RES 0	SET: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CFSF	R2 —	Chanr	nel Fu	Inctior	n Sele	ct Re	gister	2						\$YFF	E10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHAN	NEL 7			CHAN	NEL 6			CHAN	NEL 5			CHAN	NEL 4	
0 0	SET: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CESB3 — Channel Euroction Select Register 3															
CFSF	R3 —	Chanr	nel Fu	Inctior	n Sele	ct Re	gister	3						\$YFF	E12
CFSF 15	R3 — 14	Chanr 13	nel Fu		ח Sele	ct Re	gister ⁸	3 7	6	5	4	3	2	\$YFF	E12 0
CFSF 15	R3 — 14 CHAN	Chanr 13 NEL 3	nel Fu		10 CHANI	2000 Ct Re 9 NEL 2	gister ⁸	3 7	6 CHAN	5 NEL 1	4	3	2 CHAN	\$YFF 1 NEL 0	E12 0

CHANNEL[15:0] — Encoded Time Function for each Channel

Encoded four-bit fields in the channel function select registers specify one of 16 time functions to be executed on the corresponding channel.

D.5.8 Host Sequence Registers

HSQR0 — Host Sequence Register 0 \$YI														\$YFF	E14
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH	l 15	СН	14	CH	13	СН	12	CH	11	CH	l 10	CH	19	CH	18
RES	SET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HSQ	R1 —	Host	Sequ	ence	Regis	ster 1								\$YFF	E16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Cł	17	Cł	16	Cł	15	CH	14	Cł	13	CI	H 2	Cł	11	CH	10
REG	SET:														

CH[15:0] — Encoded Host Sequence

The host sequence field selects the mode of operation for the time function selected on a given channel. The meaning of the host sequence bits depends on the time function specified.

D.5.9 Host Service Request Registers

HSSF	ISSR0 — Host Service Request Register 0 \$YFFE18														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH	15	CH	14	CH	13	CH	12	CH	11	CH	10	CH	19	CH	18
RES	GET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HSSR1 — Host Service Request Register 1 \$YFFE													E1A		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH	17	CH	16	CH	15	CH	14	CH	13	CI	12	CH	11	CH	10
RES	SET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CH[15:0] — Encoded Type of Host Service

The host service request field selects the type of host service request for the time function selected on a given channel. The meaning of the host service request bits depends on the time function specified.

A host service request field cleared to %00 signals the host that service is completed by the microengine on that channel. The host can request service on a channel by writing the corresponding host service request field to one of three non-zero states. The CPU32 should monitor the host service request register until the TPU clears the service request to %00 before any parameters are changed or a new service request is issued to the channel.

D.5.10 Channel Priority Registers

CPR	CPR0 — Channel Priority Register 0 \$YFFE1C														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH	15	СН	14	СН	13	СН	12	CH	11	CH	10	CH	19	CH	18
RE	SET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPR ⁻	I — C	hann	el Pric	ority F	Registe	er 1								\$YFF	E1E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CI	17	CH	16	CH	15	CH	14	CH	13	CI	12	CH	11	CH	10
RE	SET:			•		•		•				•			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CH[15:0] — Encoded Channel Priority Levels

Table D-29 shows channel priority levels.

Table D-29 Channel Priorities

CHx[1:0]	Service	Guaranteed Time Slots
00	Disabled	_
01	Low	1 out of 7
10	Middle	2 out of 7
11	High	4 out of 7

D.5.11 Channel Interrupt Status Register

CISR — Channel Interrupt Status Register

15 14 13 12 11 10 9 8 7 5 2 1 0 6 4 3 CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0 BESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH[15:0] — Channel Interrupt Status

0 = Channel interrupt not asserted.

1 = Channel interrupt asserted.

D.5.12 Link Register

LR — Link Register

Used for factory test only.

\$YFFE20

\$YFFE22

D.5.13 Service Grant Latch Register

SGLR — Service Grant Latch Register Used for factory test only.

D.5.14 Decoded Channel Number Register

DCNR — Decoded Channel Number Register

Used for factory test only.

D.5.15 TPU Parameter RAM

The channel parameter registers are organized as one hundred 16-bit words of RAM. Channels 0 to 13 have six parameters. Channels 14 and 15 each have eight parameters. The parameter registers constitute a shared work space for communication between the CPU32 and the TPU. Refer to **Table D-30**.

Channel	Base	Parameter								
Number	Address	0	1	2	3	4	5	6	7	
0	\$YFFF## ^{1, 2}	00	02	04	06	08	0A	_		
1	\$YFFF##	10	12	14	16	18	1A	_	_	
2	\$YFFF##	20	22	24	26	28	2A	—	_	
3	\$YFFF##	30	32	34	36	38	ЗA	_	_	
4	\$YFFF##	40	42	44	46	48	4A	_	_	
5	\$YFFF##	50	52	54	56	58	5A	_	_	
6	\$YFFF##	60	62	64	66	68	6A	_	_	
7	\$YFFF##	70	72	74	76	78	7A	_	_	
8	\$YFFF##	80	82	84	86	88	8A	_		
9	\$YFFF##	90	92	94	96	98	9A			
10	\$YFFF##	A0	A2	A4	A6	A8	AA	_	_	
11	\$YFFF##	B0	B2	B4	B6	B8	BA	_	_	
12	\$YFFF##	C0	C2	C4	C6	C8	CA	_	_	
13	\$YFFF##	D0	D2	D4	D6	D8	DA	_	_	
14	\$YFFF##	E0	E2	E4	E6	E8	EA	EC	EE	
15	\$YFFF##	F0	F2	F4	F6	F8	FA	FC	FE	

Table D-30 Parameter RAM Address Map

NOTES:

1. Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR. 2. ## = Not implemented.

\$YFFE26

\$YFFE24

